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Abstract The purpose of this paper is to investigate the problem of finding a common
element of the set of solutions of a generalized equilibrium problem (for short, GEP) and
the set of fixed points of a nonexpansive mapping in the setting of Hilbert spaces. By using
well-known Fan-KKM lemma, we derive the existence and uniqueness of a solution of the
auxiliary problem for GEP. On account of this result and Nadler’s theorem, we propose an
iterative scheme by the viscosity approximation method for finding a common element of the
set of solutions of GEP and the set of fixed points of a nonexpansive mapping. Furthermore,
it is proven that the sequences generated by this iterative scheme converge strongly to a
common element of the set of solutions of GEP and the set of fixed points of a nonexpansive

mapping.
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1 Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by (., .) and || - ||,
respectively. Let CB(H) be the family of all nonempty closed bounded subsets of H and
H(., .) be the Hausdorff metric on CB(H) defined as

H(U, V) = max [sup d(,V),supd(U, v)}, YU,V € CB(H),
uelU veV
where d(u, V) = infycy d(u, v), d(U, v) = inf,cy d(u, v) and d(u, v) = |lu — v|.

Let C be a nonempty closed convex subset of H. Let ¢ : C — R be areal-valued function,
T:C — CB(H) a multivalued mapping and ®: H x C x C — R an equilibrium-like
function, that is, ®(w, u, v) + ®(w, v, u) = 0 for all (w, u, v) € H x C x C. We consider
the following generalized equilibrium problem (GEP):

Findu € C and w € T (u) such that

(GEP) [ D (w, u,v) + o) —pm) >0, VYvecC.

The set of such solutions u# € C of (GEP) is denoted by (GEP)s.

Special Cases:

(i) Given a mapping N:H x H — H, let ®(w,u,v) = (N(w,u),v — u) for all
(w,u,v) € Hx C x C, then (GEP) reduces to the following generalized set-valued
strongly nonlinear mixed variational inequality problem:

Findu € C and w € T (u) such that
(N(w,u),v—u)+¢@) —pw) >0, VYveC.

It has been considered and studied in Zeng et al. (2005) in the case when C = H.
(1) If ¢ =0and ®(w, u, v) = F(u,v) where F :C x C — R, then (GEP) becomes the
equilibrium problem (for short, EP), which is to find # € C such that

F(u,v) >0, YveC.

The set of such solutions # € C of EP is denoted by EPg.

(iii) Given a mapping T :C — H,let F(u,v) = (Tu,v — u) for all (u, v) € C x C, then
EP reduces to the classical variational inequality problem, which is to find u € C such
that

(Tu,v—u) >0, YveC.

For appropriate and suitable choice of the mapping T, the functions ® and ¢, and the
convex subset K, one can obtain a number of the known classes of variational inequalities and
variational-like inequalities as special cases from (GEP); See, for example, Blum and Oettli
(1994); Zeng et al. (2005) and references therein. It is well known that the numerous problems
from physics, optimization and economics can be written either in the form of (GEP) or its
special cases. In the recent past, some approximation methods have been proposed to solve
EP; See, for example, Combettes and Hirstoaga (2005); Flam and Antipin (1997). Combettes
and Hirstoaga (2005) introduced an iterative scheme for finding the best approximation to
the initial data when EPg is nonempty and proved a strong convergence theorem.

A mapping S: C — H is called nonexpansive if

[Sx — Syl < llx —yll, Vx,yeC.
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We denote by F(S) the set of fixed points of S. Recall that if C € H is a bounded, closed
and convex set and S is a nonexpansive mapping on C into itself, then F(S) # ¥; For fixed
point theorems for nonexpansive mappings in Hilbert spaces, we refer to Takahashi (2000),
see also, Zeng and Yao (20064, b). Also, recall that a mapping f : H — H is contractive if
there exists a constant o € (0, 1) such that

IfG) = fDIl = eallx =yl Vx,yeH.

In 2000, the viscosity approximation method for selecting a particular fixed point of a given
nonexpansive mapping was proposed by Moudafi (2000). He proved the strong convergence
of both implicit and explicit iterative schemes in Hilbert spaces setting. Very recently, Ta-
kahashi and Takahashi (2007) introduced an iterative scheme by viscosity approximation
method for finding a common element of the set of solutions of EP and the set of fixed points
of a nonexpansive mapping defined on a Hilbert space. They proved a strong convergence
theorem which is connected with Combettes and Hirstoaga’s result (Combettes and Hirstoaga
2005) and Wittmann’s result (Wittmann 1992).

In this paper, we investigate the problem of finding acommon element of the set of solutions
of (GEP) and the set of fixed points of a nonexpansive mapping defined on a Hilbert space. On
one hand, by using well-known Fan-KKM lemma, we derive the existence and uniqueness of
solutions of the auxiliary problems for (GEP). On the other hand, on account of this result and
Nadler’s theorem, we introduce an iterative scheme by the viscosity approximation method
for finding a common element of the set of solutions of (GEP) and the set of fixed points
of a nonexpansive mapping. Furthermore, it is proven that the sequences generated by this
iterative scheme converge strongly to a common element of the set of solutions of (GEP)
and the set of fixed points of a nonexpansive mapping. Our results are the improvements,
extension and development of the corresponding results in Combettes and Hirstoaga (2005);
Moudafi (2000); Tada and Takahashi (2007) and Takahashi and Takahashi (2007).

2 Preliminaries

Let H be a real Hilbert space with inner product (., .) and norm || - ||. It is well known that
forall x, y € H and A € [0, 1] there holds

IAx 4+ (1 =)yl = Alx? 4+ (4 =) y)? =20 =) x — y>

Let C be a nonempty closed convex subset of H. Then, for any x € H, there exists a unique
nearest point # € C such that

lx —ull < llx —vll, VYveC.

The mapping Pc :x +— u is called metric projection of H onto C. It is known that Pc is
nonexpansive. Further, forall x € H and z € C,

z=Pcx & {(x—2z,z—v)>0, VYveC.
Lemma 1 (Takahashi 2000) Let H be a real Hilbert space. Then
e+ y1% < 1% +2(v.x + ), Vx,yeH.

Throughout this paper, we shall use the notations “—" and “—" for weak convergence
and strong convergence, respectively.
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Definition 1 A multivalued map 7 : C — CB(H) is said to be H-Lipschitz continuous if
there exists a constant ;& > 0 such that

HT (), T(v) < pllu —vll, Yu,veC,
where H(., .) is the Hausdorff metric on CB(H).

Lemma 2 [Nadler’s theorem (Nadler 1969)] Let (X, | - ||) be a normed vector space and
‘H(., .) be a Hausdorff metric on CB(X). If U,V € CB(X), then for any given ¢ > 0 and
u € U, there exists v € V such that

lu—vll =@ +e)HWU, V).

For all subset B € H, we denote by co(B) the convex hull of B. A multivalued mapping
G : B — 2 is called a KKM mapping if, for every finite subset {v{, v, ..., v,} of B,

co({vr, va, ..., va}) € | J Gwa).
i=1

In the next section, we shall use the following result.

Lemma 3 (Fan 1961) Let B be a nonempty subset of a Hausdorff topological vector space
E, and let G : B — 2F be a KKM mapping. If G(x) is closed for all x € B and is compact
for at least one x € B, then (.5 G(x) # @.

Lemma 4 (Xu2002) Assume that {a,} is a sequence of nonnegative real numbers such that
a1 < (1 = yw)ay + 6y,

where {y,} is a sequence in (0, 1) and {5, } is a sequence such that

(i) 22y ¥n =005
(i) limsup8,/yn < 0o0r > o2 18,] < oo.
n—00

Then lim a, = 0.
n—oo

Proposition 1 [Takahashi 2000; See also Ansari and Yao 2001, pp. 533] Let D be a
nonempty convex subset of H, and ¢: D — R be a lower semicontinuous and convex
functional. Then ¢ is weakly lower semicontinuous.

3 Auxiliary problem and iterative schemes

Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¢ : C — R be a
real-valued function, 7 : C — CB(H) be a multivalued map and ®: H x C x C — R be
an equilibrium-like function.

To solve the generalized equilibrium problem, let us assume that the equilibrium-like
function ® : H x C x C — Rsatisfies the following conditions with respect to the multivalued
map 7T :C — CB(H):

(H1) Foreach fixedv € C, (w, u) — ®(w, u, v) is an upper semicontinuous function from
H x C to R, that is, for (w, u) € H x C, whenever w, — w and u, — u asn — 00,
we have

lim sup ®(w,, uy,, v) < ®(w, u, v);
n—0o0
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(H2) For each fixed (w,v) € H x C, u — ®(w, u, v) is a concave function;
(H3) For each fixed (w,u) € H x C, v — ®(w, u, v) is a convex function.

Given x € C and wy € T (x), we consider the following auxiliary problem for GEP (for
short, AP(GEP)) that consists of finding u € C such that
1
D(wy,u,v) + o) —@)+ —(u—x,v—u) >0, YveC,
r
where r > 0 is a constant.

Theorem 1 Let C be a nonempty, bounded, closed and convex subset of a real Hilbert space
H,andlet ¢ : C — R be alower semicontinuous and convex functional. Let T : C — CB(H)
be H-Lipschitz continuous with constant j, and ® : H x C x C — R be an equilibrium-like
function satisfying (HI)—(H3). Let r > 0 be a constant. For each x € C, take wy € T (x)
arbitrarily and define a mapping T, : C — C as follows:

T,(x) = [ueC:@(wx,u,v)—i-(p(v)—(p(u)—i-%(u—x,v—u) >0, VveC].

Then, there hold the following:
(a) T, is single-valued;
(b) T; is firmly nonexpansive (that is, for any u, v € C, ||T,u — Tv||> < (Tru—Tov, u—v))
if
d)(wla Tr(.x]), Tr(-x2)) + d)(w23 Tr(-xz)s Tr(-xl)) 5 03

forall (x1,x) € C x Candallw; € T(x;), i =1,2;
() F(T;) = (GEP)s;
(d) (GEP)s is closed and convex.

Proof (a) We claim that 7, is a single-valued map. Indeed, for each x € C, take w, € T (x)
arbitrarily. Then itis sufficient to show the existence and uniqueness of solutions of AP(GEP).

Existence of Solutions of AP(GEP): For the sake of simplicity, we write AP(GEP) as
follows: Find u € C such that

r[®(wy, u,v) + o) —@w)]+u—x,v—u) >0, VvecC.
For each v € C, we define
G)={zeCir[®(wy,z,v) + o) — @]+ (z —x,v—2z) > 0}

Note that, for each v € C, G(v) is nonempty since v € G (v).
We shall prove that G is a KKM mapping. Suppose that there is a finite subset
{vi,va,...,vp}of Cando; > Oforalli =1,2,...,n with er'lzl «; = 1 such that

n
D=> ajv ¢ Gvy), Vi.
i=1
Then, we have
r [d>(wx, 0, ;) + @(v;) — (p(ﬁ)] + {0 —x,v;, —0) <0, Vi
Therefore,

> air [®wy, b, v1) + () — 9] + D ei(d — x, v — D) < 0.

i=1 i=1
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Since @ is an equilibrium-like function, it is easy to see that ®(wy, U, 0) = 0. Note that
condition (H3) implies the convexity of the functional v +— @ (wy, 0, v). By using the
convexity of ¢, we get
0=r[®wy, D, )+ @) — @]+ (d—x,0— D)
n n
< D air [O(we, B, v) + @) — e(®)] + D i (D —x, v; — )
i=1 i=1
< 0,
a contradiction. Hence, G is a KKM mapping.
Since G(v)w [the weak closure of G(v)] is a weakly closed subset of a bounded set C
in H, it is weakly compact. Hence, by Lemma 3, (), ¢ G)" #P. Letu € (yee G()".
Then, for each v € C, there exists a sequence {z,,} in G (v) such that z,, — u. Therefore,

r [ @ Wy, Zm, V) + @) — @@Zm)] + (zm — X, v — 2m) = 0. (D
Since the norm || - || is weakly lower semicontinuous, we have

lim sup(z,y — x, v — 2p) = limsup [z — x, v) + (x, 2m) — ||Zm||2]
m— 00 m— 00
< lim (z; —x,v) + lim {x, zp)
m— 00 m—0Q
—liminf ||z, ]|
m—0oQ
<{u—x,v—u).
Since ¢ is a lower semicontinuous and convex functional, it is weakly lower semicontinuous.
Note that conditions (H1) and (H2) imply the weakly upper semicontinuity of the functional
7+ ®(wy, z, v). Thus, it follows from (1) that

r[®(wy, u,v) + W) —eWw)]+ (4 —x,v—u)

>r [lim sup ® (wy, Zm, v) + @(v) — lim inf w(zm)]
m— 00

m—0o0

+lim sup(z; — X, v — zn)
m—0o0

> lim sup {r [P (wx, Zm, V) + @) — @(Zn)] + (Zm — X, v — Zm)}

> 0.

This shows that the auxiliary problem AP(GEP) has a solution u € C.
Uniqueness of Solutions of AP(GEP): Let u1 and u be two solutions of AP(GEP). Then,
forallv € C,

r®wy, ur, v) + ) — @)l + (W —x,v—uy) =0, (2)
and

r [P (wy, u2, v) + ) — @)l + (U2 —x, v —uz) = 0. 3
Taking v = u3 in (2) and v = u in (3), and adding up these two inequalities, we obtain

r[@(wy, ur, uz) + @) — @)l + (uy — x, uz — uy)
+r [D(wy, uz, ur) + @) —@Ww2)] + (u2 —x,u;y —uz) > 0. “4)

Since @ is an equilibrium-like function, we have

D (wy, u, uz) + ®(wy, uz, uy) =0,
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and hence from (4) we get
luz — will® = (uz — uy, uz — ur) < 0.

This implies that u; = u». Thus, the solution of AP(GEP) is unique. Therefore, 7, is a single-
valued map.
(b) We claim that 7, is firmly nonexpansive. Indeed, for each x1, xo € C, let us define

uy =T,(x;) and wupy = T, (x2).
Then according to the definition of 7}, there are wy, € T(x;) fori = 1, 2 such that
r[® @y, ur, v) + @) — @] + (w1 — x1, v —u1) =0, )
and
r[®(wy,, u2, v) + 9(v) — @u2)] + (U2 — x2, v — uz) > 0. (6)
Taking v = u2 in (5) and v = u in (6), and adding up these two inequalities, we obtain
[®(wy, s u2) + @ua) — @ur) | + (w1 — x1,up — up)
1 [ ®(way. 2, u1) + @(u1) — @) | 4 (ua — x2, uy — uz) > 0. @)
Since
@ (wy,, Ty (x1), T (x2)) + @(wx,, Tr(x2), T (x1)) <0,
it follows from (7) that
0 < (uy —x1,uz — uy) + (uz — X2, uy — uz) = {xa — x1,us — uy) — lluz — uy %,
that is,
1Ty (x2) = T en) [P < (T (x2) — T (1), 22 — 1)

This shows that 7, is firmly nonexpansive.
(c) We claim that F(7,) = (GEP)g. Indeed, we observe that

xeF(T,)s T,x=x
< 1 [P(wy,x,v) +o) —x)]+{(x —x,v—x), VveC
& O(wy,x,v)+ W) —pkx) >0, YveC
& x € (GEP)g.

(d) We claim that (GEP)g is closed and convex. Indeed, since by conclusion (c), F(T,) =
(GEP)yg, it is sufficient to show that F(7,) is closed and convex. Let {x,} be a sequence in
F (T,) satistying x, — x € C as n — 00. Then we have

T.(x) = lim T,(x,) = lim x, = x.
n—o0 n—0o0

This implies that x € F(7,). Thus F(T}) is closed.
Now, it remains to show the convexity of F (7). Let x| and x; be any elements of F (7).
Then for any ¢ € [0, 1], we write z = tx1 + (1 — 1)x,. Observe that
T,z — zlI* = t(Trz — x1) + (1 = )(Trz — x2) |12
=Tz =0l + (A =0Tz — x> —t(1 = D)lx1 — x2|)?
11— [lx1 = x2l® + (1= D [x1 — x2)?
—1(1 = 0)lx1 = x2?
=0,

IA

@ Springer



494 J Glob Optim (2009) 43:487-502

which implies that T,z = z, thatis, z € F(T,). Thus, F(T},) is convex. This completes the
proof. O

On account of the above result and Nadler’s theorem, we propose an iterative scheme by
the viscosity approximation method for finding a common element of the set of solutions of
(GEP) and the set of fixed points of the nonexpansive mapping S: C — C.

Let {or;} be a sequence in [0, 1] and {r,} be a sequence in (0, 0o0). Let f be a contraction
mapping of C into itself with constant « € (0, 1). For given x| € C and w; € T (x1), from
Theorem 1, we know that the following auxiliary problem has a unique solution u; =
T, (x1) € C, that is,

1
O(wy, ur,v) + o) —@(uy) + r—(ul —x,v—uy) >0, VvecC.
1

Utilizing u; € C, we define
xy =a f(x1) + (1 —ap)Su;.
Since w; € T (x1), by Nadler’s theorem (Nadler 1969), there exists wy € T (x2) such that
lwi —wall < (1 + DHA(T (x1), T(x2)).

By Theorem 1 again, the following auxiliary problem has a unique solution u; =7},
(x2) € C, that s,

1
D(wa, uz, v) + @) — e(u2) + 7(“2 —x2,v—uz) >0, VveC.
2
Utilizing uy € C, we define

x3 =ay f(x2) + (1 —a2)Sus.

Since wy € T (x2), by Nadler’s theorem (Nadler 1969), there exists w3 € T (x3) such that

1
lwy — w3l < (1 + 5) H(T (x2), T (x3)).

By induction, we obtain the following iterative algorithm for finding a common element
of the set of solutions of (GEP) and the set of fixed points of the nonexpansive mapping
§S:C— C.

Algorithm 1 For given x; € C and wy € T (x1), there exist sequences {w,} € H and
{xn}, {un} € C such that

1
wy € T(xp), Nwp — wpgll < (1 + ;) H(T (xp), T (Xp41))

8
q)(wm Un, U) +<P(U) —QD(MH) + 7(“}1 — Xp, UV — un) >0, YveC, ( )
n

X1 = f(xp) + A —ap)Su,, n=1,2,....

If § = I the identity mapping and r, = r > 0, then Algorithm 1 reduces the following
algorithm.
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Algorithm 2 For given x; € C and w; € T(x1), there exist sequences {w,} S H and
{xn}, {un} € C such that

1
wy € T(xp), |wp — wpgll < (1 + ;) H(T (xp), T (xp41)) s

1
D (wp, up, v) + @) — @un) + ;(un —Xp, v —uy) >0, YveC,
Xnt1 = o [ () + (I —a)up, n=1,2,....

4 Strong convergence results
Now, we prove the strong convergence of sequences generated by the Algorithms 1 and 2.

Theorem 2 Let C be a nonempty, bounded, closed and convex subset of a real Hilbert space
H and let ¢ : C — R be a lower semicontinuous and convex functional. Let T : C — C B(H)
be H-Lipschitz continuous with constant i, ® : H x C x C — R be an equilibrium-like func-
tion satisfying (Hl1)—(H3) and S be a nonexpansive mapping of C into itself such that
F(S)(N(GEP)s#. Let f be a contraction of C into itself and let {x,,}, {wy} and {u,} be
sequences generated by (8), where {a,} < [0, 1] and {r,} < (0, co) satisfy

o0 o0
lim o, =0, E ay = 00, E lan+1 — | < 00,
n—00

n=1 n=1

oo
liminfr, >0 and E [rpgp1 — rpl < 00.
n—oo 1

n=

If there exists a constant . > 0 such that
D (wy, Tp, (x1), Tr, (¥2)) + @ (w2, Ty (x2), Ty, (k1)) < =A|I Ty, (x1) — T, )IIF (9)

forall (r1,r) € ExXE, (x1,x2) € CxCandw; € T(x;), i = 1,2, where E = {r, :n > 1},
then for X = Prs)n(GEP)s [ (X), there exists w € T(X) such that (X, W) is a solution
of (GEP) and

X, = X, w, —>w and u, — X, asn — oo.

Proof 1t follows from condition (9) that foreachr € E = {r,, :n > 1}
D (wy, T (1), T (x2)) + @ (w2, T(x2), Tr (x1)) < —A|Tr(x1) — Tr(x2)||* <0,

forall (x1, x2) e CxCandw; € T(x;), i =1, 2. Hence all conclusions (a)—(d) of Theorem 1
hold. Let Q = Pr(s)n(GEp)g- Then Qf is a contraction on C into itself.

Indeed, since f is a contraction with constant « € (0, 1), we have || Qf(x) — Qf (V)| <
lf(x)— fWI <allx —y| forall x, y € C. Therefore, Qf is a contraction of C into itself,
which implies that there exists a unique element g € C such that g = QO f (g).

We divide the remainder of the proof into three steps.

Step 1. We claim that there exist * € C and w € T (x) such that

X, = X, w, —> w and u, — X, asn — oo.
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Indeed, since C is bounded, the sequences {x,} and {u,} are bounded. Hence, {Su,} and
{f(x,)} are also bounded. Next we show that ||x,+; — x| — 0. Observe that

IXn+1 — Xl
= llanf () + (1 — an)Sup — otp—1 f (xn—1) — (1 — ap—1)Sup—_1|
= llan f (xn) = an f (Xn—1) + & f (xn—1) — Ap—1 f (Xp—1)
+ (I —an)Sup — (1 —an)Sup—1 + (1 — otn)Sup—1
— (1 —ay—1)Suy—1|

(10)

< apallxy — xp—1ll + oy — ap—1 1K + (I —ap)|luy — wp—1l
+loy —ap—1|1K
< apallxy — xp—1ll + 2|y — ap—1|K + (I — o) luy — up—1ll,

where K = sup{|| f(xn)|l + [|Sun|l :n > 1}. On the other hand, from u, =T, x, and u,

=T, Xn+1, we have

Oty v) + 9(0) = 9lin) + -t~ X0 =) 20, WEC, (1)
and
D (Wnt1, Unt1, V) + @) — @Qunt1) + ﬁ(”n-kl —Xpt1, V—upy1) =20, (12)
forall v € C. Putting v = u,4+1 in (11) and v = u, in (12), we have
D (Wn, Un, Un+1) + @(ng1) — @un) + %(un — Xp, Un+1 — Un) = 0,

and
1
D(Wpt 1, Ung1, Un) + @Up) — @Upr) + i(un-&-l — Xn41, Up — Upg1) = 0.
n+

Adding up the last two inequalities, we derive from condition (9)

Uy — X u — X,
n no_ n+1 n+l>20!

2
—Mlup — upr I~ + <Mn+l — Un,
I'n n+l

and hence

'n

2
_rn)\”un - un+l” + <un+l —Up, Uy — Upt] + Uyl — Xp — , (un+l - xn+l)> > 0.

n+1

Since lim inf,_, o 7, > 0, without loss of generality, we may assume that there exists a real
number » > 0 such that r,, > b for all » > 1. Then we have

2 2
lupr1 —unll™ < —rpAlluprr — upll +<’4n+1 — Up, Xp4+1 — Xp

n
+(1- (tnt+1 — Xpt1)
n+l

2
< —rnrllunsr = unll” 4 a1 — unll{1Xn41 = xa

11— 'n

Mpr1 — Xng1ll}
Fn+1
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and hence

1
lupr1 — upll < —rprllugsr — upll + X001 — X0l +
n+1

[Fnt1 = rallltn+1 — X4l

IA

1
—DAllun+1 — unll + Ixnt1 — xall + Z'rn—H —rlL,
where L = sup{|lu,, — x| :n > 1}. This implies that
lunt1 —unll < Ollxp+1 — Xl + (L/B)|rps1 — ral. (13)
where 6 = 1/(1 + bA). Thus, from (10) we have
llxn+1 — Xull
< apallx, — xp—1ll + 2l —ap—11K
L
+ (I —an)@llxn — xp—1ll + —|rn — ra—1
b (14)
= (apa + (1 — ) lxp — xp—1ll + 2|0y — ay—11K
L
+ (I —ay)—rn — rp—1l
b L
< kllxp — xp1ll + 2K oty — 1| + — 1 — ra—1l,

b

where ¥ = max{w, 0} = max{c, 1/(1 + bA)}.
Now put

L
an = ||xn —Xn71||, Yn = 1 — K, and (Sn =2K|Oln _O[nfll + E|rn _rnfll’

foreachn > 1. Then > 2 | y, = coand Y -, 8§, < 0o. Moreover, (14) can be rewritten as
ant1 < (I —yn)an +3,, Vn > 1.

From Lemma 4, we have a, — 0 as n — oo, thatis, ||x,+1 — x| > 0asn — oo.
Consequently, for any given & > 0, there exists an integer Nog > 1 such that for all integers
m and n withm > n > N,

- L
Ixn = xp1ll <& and D 2K lej —ajal+ Slry =il | <.

j=n

This together with (14) implies that for all integers m and n with m > n > N,

m—1
Ixm = xall < D7 lxj51 — ;i
j=n
m—1 m—1 I
<k lx—xiall+ [2K|aj —ajil+ Sl —r,-_1|]
j=n j=n
m—1
=1 > lxje1 = Xl = kllxm — X | + [0 — X1l
j=n
m—1 L
+ | 2Kl — |+ Sl =il
j=n
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m—1
< D lxjn = x5l 4+ (L + 60,
j=n
and so
m—1
1+«

i = xall = 27 Iy = 21 = T (15)

j=n

This shows that {x, } is a Cauchy sequence in C. Let lim;,—, o0 x, = X.Since T : C — CB(H)
is a H-Lipschitz continuous multivalued map with constant ., from (8) we obtain

1 1
lwy — wpg1ll < (1 + ;) H(T (xp), T (xp41)) < (1 + ;) wllxn — Xnt1ll.

From (15), we conclude that for all integers m and n with m > n > Ny,
m—1 m—1

1 1+«
lwm = wall < D" wjpr —will < > (1 + 7) plbjen = x50 < 25

J=n J=n

Therefore, {w,} is a Cauchy sequence in a complete space H and hence there exists w € H
such that w, — W as n — oo.

On the other hand, we prove that w € T(x). Indeed, since w, € T (x,) and

weT (%)

d(wy, T(X)) < max {d(wy, T(X)), sup d(T(xn), w)]

<max{ sup d(z,T(x)), sup d(T(xp), w)]
zeT (xp) weT (X)
=H(T(xn), T(R)).

We derive

dW, T (X)) < | — wyl + d(wy, T (%))
< b — wall + H (T (xn), T(£))
< |0 — wyll + pllxy, — £ — 0, asn — oo,
which implies that d(w, T'(x)) = 0. Since T'(x) € CB(H), it follows that w € T (X).
Furthermore, from (13) and (15), we obtain for all integers m and n withm > n > Ny,

m—1
ltm = wnll < D Matjr —
j=n

m—1

D Ollxjr = xjll+ (L/B)Irjr = rjl)

j=n
m—1 m—1

< DOl — x5l + D [2K ey — o]
j=n j=n

+(L/b)|rjz1 —rjl]

14+«
<40 e+e¢
1—«

IA
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1
:(9 +K+1)a.
1—«

Thus {u,} is a Cauchy sequence in C. Letu,, — i1 € C asn — 00.
Since x, = ap—1f (xp—1) + (1 — oy—1)Su,—1, we have

[l — Sun” =< ”xn - Sunfl” + ||Su”,1 - Sun”
=< anfl”f(xnfl) — Sup—1|l + llup—1 — uyll.
Since «;, — 0, we have ||x, — Su, || — 0. For p € F(S) [ (GEP)g, we have
lun = plI* = 1T, %0 — Ty, pII?
= <Trn~xn - Trnp; Xp — P)
= (up — p, Xn — p)

1
5 (lun — P+ l1xn — pI* = llxn — uall?)

and hence

2 2 2
lun = pI” < llxn = pI" = X0 — unll”

Therefore, from the convexity of || - 1%, we have

%01 =PI < anll f () = pII* + (1 — o) || Sun — plI?
< apll () = pII* + (1 — e llun — plI?
< apllf () = I + (1 — a)(Uxn — plI> = Nl — unll?),

and hence

A

< anll f () = pIIF 4+ (1 — ) lxa — plI?
—[xp41 — plI?

anll f(xn) — plII?

Hlxn = X1 [ Axn = Il + 1201 — PID-

(1 — )Xy — un |l

IA

So, we have ||x, — u,|| — 0. Since
lun — 2N < llun — xall + X0 — £l

we have u, — x.

Step 2. We claim that x € F(S) N (GEP)g. Indeed, since

IS5 — %l < IS% — Sunll + 1Sun — xnll + llxn — unll + llun — X||

< ISup — xpll + llxn — wnll + 2/, — X1,

we have SX = x. Hence, X € F(S). Let us show X € (GEP)g. By u,, = T}, x,,, we have

1
D (wy, up, v) + @) — @(u,) + T(Mn —Xp, v —up) >0, YveC.

n

Since limy,— o ||y, — x|l = 0, from condition (H1) and the lower semicontinuity of ¢ we
derive

d(w, x,v) + @) —ex) >0, VYveC.
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This implies that x € (GEP)g. Consequently, X € F(S§) N (GEP)g.

Step 3. We claim that £ = g, where ¢ = Pr(5)n(GEP) f (¢). Indeed, by Step 2 we have
Jim (f(@) = ¢, —q) = (f(@) —¢, % —q) < 0. (16)
Note that x,,+1 — g = (1 — «,)(Su, — q) + o (f (x,) — q). Then by Lemma 1, we have
Ixn41 = qlI* < (1= an)?(|Sun — qlI* + 200 (f (Xn) — . Xn1 — q)
= (1 — on)?(|Sun — ql
+20, (f (xn) — f(@) + f(@) — ¢, Xn+1 — q)
< (1= o) llun — ql* + 2anet (1% = qllIxXn41 — gl
+20,(f(q) — 4, Xn+1 — q)
< (1= an)?lun — qI* + enerl{lxn — ql* + lxar1 — g%}
+2O[n<f(q) — 4, Xp4+1 — f])
This implies that

2 < (1 _(xn)z +05n

IXn+1 —qll lxn — ql* + —— (f(q) 4, Xn+1 —q)
1 —aya 1—
2(1 — a)ay, 2 2(1 — )y, oy, 5
= 1—7 —_ —
( n )uxn AP+ S gy

1
+17<f(q)—q,xn+1—q>]-
—a

Put y, = 2(1 —9% Thep > vn = o0 and lim,_, o ¥, = 0. Since

—p

. 2 1 _
nll)ﬂgolﬁ”xn qll” + m(f(Q) — 4, Xn+1 —61)] =0,

by Lemma 4, we know that lim,,_, « ||x, — g|| = 0. According to the uniqueness of the limit,
we get ¢ = X. This completes the proof. m}

Example 1 'We now illustrate condition (9) by virtue of an example.
Let H = C = R and let the inner product (-, -) and norm || - || in H = R be defined in the
usual sense as
(x,y) =xy, Vx,y e H, and |x| =|x|, Vx € H.

Let r be a positive constant with 0 < r < % andputr, =r, Yn > 1. Then E :={r, : n >
1} = {r}.
Letusdefine 7:C — CB(H)and ®: H x C x C — R as follows:

Tx =2x,Vx e H, and ®(w,x,y)=(w,y—x), Y(w,x,y) € HxC xC.

Let x; and x, be arbitrary elements in C. Observe that for w; = Tx; = 2x; and
wy = Txy = 2x7,
D (wy, Trxy, Trx2) + ® (w2, Trxz2, Trx1)
= (w1, T, x2 — T, x1) + (w2, Trx1 — T x2)
(2x1, Trxa — Trxy) + (2x2, Trxy — Ty x2)
—2()61 —x2, Trx1 — Trx2>- (17)
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On the other hand, let us define
uy =T,x; and wupy = Tyxs.
Then according to the definition of 7., there hold the following inequalities for w; = Tx; =
2x1 and wy = Txp = 2x2,
r[®(wy, ur, v) + o) — @)l + (ug — x1,v —up) 20, (18)
and
r[@(wz, uz, v) + @(v) — @u2)] + (U2 — x2, v —uz) > 0. (19)
Taking v = u» in (18) and v = u; in (19), and adding up these two inequalities, we obtain
0 < r[®(wy, ur, uz) + @uz) — )] + (uy — xy, up — uy)
+r[®(wy, uz, ur) +ui) — @)l + (U2 — x2, u1 — uz)
=r[®(wy, uy, uz) + ®(wo, uz, ur)] + (ug — x1, up — uy)
+(uy — x2,u1 — uz)
= r[® w1, ur, uz) + P(wa, uz, un)] + (x2 — x1,uz2 — uy) — |luz — uy||?
= r[® (w1, Trx1, Trx2) + ® (w2, Trx2, Trx1)] + (x2 — x1, Trx2 — T x1)
~1Trx2 — Toxi |
which together with (17), implies that
T2 — Trxi 1> < r[®(wy, Tyxy, Trx2) + (w2, Trxa, Trx1)]
+(x2 — x1, Trxp — Ty x1)
= r[®(wy, Trx1, Trx2) + © (w2, Trx2, Trx1)]

1
—E[q)(wl, Ty xy, Trx2) + @ (w2, Trx2, Trx1)]
1
= - (5 - V) [®(wy, Trx1, Trx2) + ® (w2, Trxz, Trx1)].

Therefore, it follows that
O (wy, Trx1, Trxz) + ®(wa, Trxa, Trxy) < —A[Trxy — Trxy |2,

where A = 2/(1 —2r). This shows that inequality (9) holds for all (r1, r2) € Ex E, (x1, x2) €
CxCandw; € T(x;), i =1,2.

As a direct consequence of Theorem 2, we obtain the following result.

Corollary 1 Let C be a nonempty, bounded, closed and convex subset of a real Hilbert space
H and ¢ : C — R be a lower semicontinuous and convex functional. Let T :C — CB(H)
be a H-Lipschitz continuous multivalued map with constant u, ®: H x C x C — R be
an equilibrium-like function satisfying (H1)—(H3) and S be a nonexpansive mapping of C
into itself such that F(S) N (GEP)g # 0. Let r be a positive parameter, [ be a contraction
of C into itself and {x,}, {w,} and {u,} be sequences generated by Algorithm 2, where
{an} € [0, 1] satisfies

oo o0
lim o, =0, E o, = oo and E |ap4+1 — | < 00.
n—o0

n=1 n=1
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If there exists a constant ). > 0 such that
O(wy, Trxi, Trx2) + D(wa, Trxz, Trxt) < =4 Trxt = Trxa |

for all (x1,x2) € C x C and w; € T(x;), i = 1,2, then for ¥ = Pr(s)nGep)s S (X),
there exists W € T (x) such that (x, W) is a solution of (GEP) and

X, = X, w, — w and u, — X, asn — o0.
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